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Outline

1. Introduction to the Topic
• Overview
• The Protagonists
• Main Problem

2. Tackling the Main Problem
• Construct and analyze Spin(n) and srepn
• Determine the unipotent classes of Spin(n)
• Find a way to compute the Jordan normal form of srepn(C ) for all

unipotent classes C ⊆ Spin(n)
• Detect patterns and derive theoretical results
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The Setting

Groups

fundamental
math. objects

Matrices

tool to study
math. objects

GL(n)

Algebraic Geometry

studies solution sets of
polynomial equations

Linear Algebraic Groups
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Linear Algebraic Groups

Throughout: K algebraically closed field with char(K ) 6= 2, n ∈ Z>0,
GL(n) := GL(n,K )

Definition

An affine variety (over K ) is the common zero locus in Kn of a set of
polynomials S ⊆ K [X1, . . . ,Xn].

Definition

A group G is a linear algebraic group if it is an affine variety and the
group operations G × G → G , (x , y) 7→ xy and G → G , x 7→ x−1 are
given by polynomial equations in the coordinates.

• Analogous to Lie groups, topological groups

• Methods from both group theory and algebraic geometry available,
giving powerful theory
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Linear Algebraic Groups

Example

• (K ,+) is zero locus of 0 ∈ K [X ] and a linear algebraic group

• GL(n) ∼= {(A, y) ∈ Kn×n × K | detA · y = 1} is linear algebraic group

Term “linear” refers to the following fact:

Theorem

Every linear algebraic group is isomorphic to a linear algebraic group
contained in GL(r) for some r ∈ Z>0.
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Linear Algebraic Groups

Alternative Definition

A linear algebraic group (over K ) is a subgroup of GL(n) that is defined by
polynomial equations for the matrix entries.

Example

• Special linear group SL(n) = {A ∈ GL(n) | detA = 1}
• Special orthogonal group

SO(n) = {A ∈ GL(n) | AA> = Idn, detA = 1}

Have connections to many areas of algebra, e.g. number theory and finite
group theory
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Classification

• Every linear algebraic group can be “split up” into a finite part,
a solvable part and a semisimple part

• Every semisimple group is product of simple linear algebraic groups

I Simples are building blocks for semisimples

• Simples can be classified by combinatorial data (Dynkin Diagrams)!
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Spin Groups

• Among simple linear algebraic groups
is family of spin groups Spin(n)

I Important objects of study

• “Problem”: not constructed as a
subgroup of GL, but abstractly

Simples

SL
Spin

SO

• To study Spin(n), use representations
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Spin Representation

Definition

A (matrix) representation of a group G is a group homomorphism
G → GL(m) for some m ∈ Z>0.

• Allows to study groups via matrices and linear algebra which we
know well!

• In case of spin groups, study the spin representation

srepn : Spin(n)→ GL(2b
n
2
c)

that arises naturally
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Unipotent Elements

Definition

A ∈ GL(n) is called unipotent if all its eigenvalues are 1.

• Unipotent elements play important role in
structure theory of linear algebraic groups

• Are interested in their Jordan normal form
because it encodes a lot of information


1 1

1
1 1

1


Jordan Blocks
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Main Problem of my Thesis

Main Problem, 1st Formulation

For u ∈ Spin(n) unipotent, find the Jordan normal form of srepn(u)

• Observation: If A,B ∈ GL(m), then A and BAB−1 have same Jordan
normal form

I Suffices to consider conjugacy classes {xux−1 | x ∈ Spin(n)} of
unipotent elements u

Main Problem

For C ⊆ Spin(n) unipotent class, find the Jordan normal form
of srepn(C )
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Construction of Spin(n)

V := Kn, Q :=
∑n

i=1 XiXn+1−i quadratic form on V .
T (V ) = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · tensor algebra of V

Definition

The Clifford algebra of Q is Cliff(n) := T (V )/〈v ⊗ v − Q(v) | v ∈ V 〉

Note: V ⊆ Cliff(n) generates Cliff(n), v2 = Q(v) ∈ Cliff(n)

Definition

Spin(n) := {x ∈ Cliff(n)× | xVx−1 ⊆ V , plus some normalizing condition}

Example (Low dimensions)

Spin(1) = {±1}, Spin(2) ∼= K×, Spin(3) ∼= SL(2).
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Construction of Spin(n)

Definition

Spin(n) := {x ∈ Cliff(n)× | xVx−1 ⊆ V , plus some normalizing condition}

• For x ∈ Spin(n) let ϕx : V → V , v 7→ xvx−1. Get exact sequence

Spin(n) SO(n) 1{±1}1

x ϕx

ϕ

• Closely relates Spin(n) and SO(n)!

• Have generating system:

Spin(n) = 〈uv | u, v ∈ V ,Q(u) = Q(v) = −1〉.
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Spin Representation

• Depending on parity of n, Cliff(n) only has 1 resp. 2 irreducible
representations

• Spin representation srepn : Spin(n)→ GL(2b
n
2
c) is restriction of

irreducible representation of Cliff(n) (independent of choice)

• srepn can be computed on generating system of Spin(n)

Example (n = 2)

Here, can give full description:

srep2 : Spin(2) ∼= K× → GL(2), t 7→
(
t

t−1

)

For bigger n more complicated and less explicit!

Robin Ammon Jordan Blocks of Unipotent Elements in Spin Groups 17 / 36



Spin Representation

• Depending on parity of n, Cliff(n) only has 1 resp. 2 irreducible
representations

• Spin representation srepn : Spin(n)→ GL(2b
n
2
c) is restriction of

irreducible representation of Cliff(n) (independent of choice)

• srepn can be computed on generating system of Spin(n)

Example (n = 2)

Here, can give full description:

srep2 : Spin(2) ∼= K× → GL(2), t 7→
(
t

t−1

)

For bigger n more complicated and less explicit!

Robin Ammon Jordan Blocks of Unipotent Elements in Spin Groups 17 / 36



Outline

1. Introduction to the Topic
• Overview
• The Protagonists
• Main Problem

2. Tackling the Main Problem
• Construct and analyze Spin(n) and srepn
• Determine the unipotent classes of Spin(n)
• Find a way to compute the Jordan normal form of srepn(C ) for all

unipotent classes C ⊆ Spin(n)
• Detect patterns and derive theoretical results

Robin Ammon Jordan Blocks of Unipotent Elements in Spin Groups 18 / 36



Determining the Unipotent Classes of Spin(n)

• Group homomorphism ϕ : Spin(n)→ SO(n) induces bijection
between unipotent classes of Spin(n) and SO(n)

• Unipotent conjugacy classes of SO(n) well-known! Are described
in terms of Jordan normal forms

• Finitely many and can easily be computed

Spin(n) SO(n)

{unip. classes of Spin(n)} {unip. classes of SO(n)}

ϕ

1:1

easy!
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Situation for very small n

Example (n = 1)

Only one unipotent class in Spin(1), the class of the identity element e.
Have srep1(e) = (1) ∈ GL(1) X

Example (n = 2)

Again only the class of e ∈ Spin(2). Here, srep2(e) =
(
1 0
0 1

)
X

• For n ≥ 3 more than one unipotent class

• Cannot compute srepn explicitly for all classes
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Approach to the Problem

• For 1 ≤ r < n established inclusion Spin(r) ⊆ Spin(n) and
group homomorphism

β : Spin(r)× Spin(n − r)→ Spin(n)

I Idea to tackle Main Problem: Restrict spin representation and
use induction!

• Two questions arising:
1. How does restriction of srepn look like?
2. Which unipotent classes are in the image of β?
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Q1: How does restriction of srepn look like?

Known result:

Theorem (Meinrenken)

srepn

∣∣
Spin(n−1) =

{
srepn−1⊕ srepn−1, n even,

srepn−1, n odd.

• Proof relies on representation theory of Clifford algebras

• Approach can be adapted to the situation

β : Spin(r)× Spin(n − r)→ Spin(n)!
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Q1: How does restriction of srepn look like?

General statement needs:

Definition

Let A ∈ GL(s), B ∈ GL(t). The Kronecker product of A and B is

A⊗ B :=

a11B · · · a1sB
...

. . .
...

as1B · · · assB

 ∈ GL(st).

Definition

Let ρ : G → GL(s), σ : H → GL(t) representations of groups G , H. Then

ρ⊗ σ : G × H → GL(st), (g , h) 7→ ρ(g)⊗ σ(h)

is a representation of G × H, the tensor product of ρ and σ.
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Q1: How does restriction of srepn look like?

Restriction Theorem (A.)

Let 1 ≤ r < n and β : Spin(r)× Spin(n − r)→ Spin(n) as before. Then

srepn ◦β =

{
(srepr ⊗ srepn−r )⊕ (srepr ⊗ srepn−r ), n even, r odd,

srepr ⊗ srepn−r , else

• For r = 1 retrieve old result

• Can be refined for irreducible constituents of srepn

• Thus in imβ ⊆ Spin(n) can use lower-dimensional results!
Kronecker product easy to compute
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Q2: Which unipotent classes are in the image of β?

• Have commutative diagram
with simple map on the
SO-side

• Allows to check question for
classes of SO where this is
easy!

Spin(r)× Spin(n − r) Spin(n)

SO(r)× SO(n − r) SO(n)

(A,B)

(
A

B

)

β

ϕ

• Turns out: Except for one unipotent class, a member of every class is
in the image of beta!

• Remains to compute Jordan blocks for exceptional class
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Dealing with the Exceptional Class

• Determined root subgroups Ui of
spin group which reveal a lot of its
structure

• Can be described using generating
system of Spin(n)

U1 U2

Spin(n)

. . .

• Exceptional class has explicit description in terms of the Ui and
therefore in terms of the generators of Spin(n)

I Jordan blocks of exceptional class can be computed directly!
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Computation of the Jordan Blocks of Unipotent Classes

• n = 1, 2 X

• n ≥ 3: Jordan blocks for all unipotent classes except one can be
computed inductively using Restriction Theorem

• Blocks of the exceptional class can be computed directly
using knowledge on root subgroups

Gives recursive algorithm. Has been implemented in the
Computer Algebra System GAP
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Results – Notation

• Recall: all eigenvalues of unipotent elements are 1. Same holds
for image under spin representation

• If a block of size s occurs with multiplicity m, write sm, e.g.
1

1
1 1

1 1
1

 −→ 12, 3

• For simplicity, unipotent classes have no specific labels
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Results in Low Dimensions

n Class Jordan blocks

1 C11 1

2 C21 12

3 C31 12

C32 2

4 C41 14

C42 22

C43 12, 2
C44 12, 2

n Class Jordan blocks

5 C51 14

C52 22

C53 12, 2
C54 4

6 C61 18

C62 24

C63 14, 22

C64 42

C65 12, 32
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Dependence on Characteristic

Blocks only depend on char(K ) up to a certain extent:

Theorem (A.)

For each n there exists a minimal bound Bn ∈ Z≥0 such that the
Jordan blocks for Spin(n) in any characteristic ≥ Bn are the same as
the ones in characteristic 0.

Have Bn = 0 precisely for n ≤ 8.
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Block Structure

Theorem (Malle–A.)

For n ≥ 7, every unipotent class has at least two Jordan blocks.

n Class Jordan blocks

7 C71 18

C72 24

C73 14, 22

C74 42

C75 12, 32

C76 1, 22, 3
C77 1, 7

Theorem (A.)

• If n ≡ 0, 1, 7 mod 8, then
even sized blocks occur
with an even multiplicity.

• If n ≡ 3, 4, 5 mod 8, then odd
sized blocks occur
with an even multiplicity.
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Summary

Context

• Linear algebraic groups combine group theory with algebraic
geometry; one of their building blocks are spin groups

• Structure of Spin(n) influenced by unipotent elements

Results of Thesis

• Created algorithm that for every unipotent class C of Spin(n)
determines Jordan normal form of srepn(C ). Based on:
• Restriction Theorem → Induction
• Knowledge of root subgroups → Exceptional class

• Derived some theoretical results
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Thank you!
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Appendix – Results with Original Labels

n Class Jordan blocks

1 (1) 1

2 (12) 12

3 (13) 12

(3) 2

4 (14) 14

(1, 3) 22

(22)0 12, 2
(22)1 12, 2

n Class Jordan blocks

5 (15) 14

(12, 3) 22

(1, 22) 12, 2
(5) 4

6 (16) 18

(13, 3) 24

(12, 22) 14, 22

(1, 5) 42

(32) 12, 32

Robin Ammon Jordan Blocks of Unipotent Elements in Spin Groups 1 / 3



Appendix – Results in Dimension 9

Jordan blocks
Class char(K ) 6= 3 char(K ) = 3

(19) 116 116

(16, 3) 28 28

(15, 22) 18, 24 18, 24

(14, 5) 44 44

(13, 32) 14, 34 14, 34

(12, 22, 3) 12, 24, 32 12, 24, 32

(12, 7) 12, 72 12, 72

(1, 3, 5) 32, 52 32, 52

(1, 24) 15, 24, 3 15, 24, 3
(1, 42) 13, 42, 5 13, 42, 5
(22, 5) 3, 42, 5 3, 42, 5
(33) 24, 42 22, 34

(9) 5, 11 7, 9
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Appendix – Restriction Theorem

Theorem (A.)

Let n even. Then srepn = srep+
n ⊕ srep−n where srep+

n and srep−n are
irreducible, inequivalent and of the same dimension.
Let 1 ≤ r < n and β : Spin(r)× Spin(n − r)→ Spin(n).
If r is odd, then

srep±n ◦β = srepr ⊗ srepn−r .

If r is even, then

srep+
n ◦β = (srep+

r ⊕ srep+
n−r )⊗ (srep−r ⊕ srep−n−r ),

srep−n ◦β = (srep+
r ⊕ srep−n−r )⊗ (srep−r ⊕ srep+

n−r ).
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