Jordan Blocks of Unipotent Elements in Spin Groups

Robin Ammon

TU Kaiserslautern

26 March 2021

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)

• Find a way to compute the Jordan normal form of srep_n(C) for all unipotent classes $C \subseteq \text{Spin}(n)$

• Detect patterns and derive theoretical results

The Setting

ヨト イヨト

The Setting

Algebraic Geometry

studies solution sets of polynomial equations

-

→ 4 Ξ

The Setting

글 🖌 🖌 글

Throughout: K algebraically closed field with char(K) $\neq 2$, $n \in \mathbb{Z}_{>0}$, GL(n) := GL(n, K)

Definition

An affine variety (over K) is the common zero locus in K^n of a set of polynomials $S \subseteq K[X_1, \ldots, X_n]$.

Throughout: K algebraically closed field with char(K) $\neq 2$, $n \in \mathbb{Z}_{>0}$, GL(n) := GL(n, K)

Definition

An affine variety (over K) is the common zero locus in K^n of a set of polynomials $S \subseteq K[X_1, \ldots, X_n]$.

Definition

A group G is a linear algebraic group if it is an affine variety and the group operations $G \times G \rightarrow G$, $(x, y) \mapsto xy$ and $G \rightarrow G$, $x \mapsto x^{-1}$ are given by polynomial equations in the coordinates.

- Analogous to Lie groups, topological groups
- Methods from both group theory and algebraic geometry available, giving powerful theory

Example

- (K, +) is zero locus of $0 \in K[X]$ and a linear algebraic group
- $GL(n) \cong \{(A, y) \in K^{n \times n} \times K \mid \det A \cdot y = 1\}$ is linear algebraic group

Term "linear" refers to the following fact:

Theorem

Every linear algebraic group is isomorphic to a linear algebraic group contained in GL(r) for some $r \in \mathbb{Z}_{>0}$.

くゆ エヨト イヨト ヨヨ ろくつ

Alternative Definition

A linear algebraic group (over K) is a subgroup of GL(n) that is defined by polynomial equations for the matrix entries.

Alternative Definition

A linear algebraic group (over K) is a subgroup of GL(n) that is defined by polynomial equations for the matrix entries.

Example

- Special linear group $SL(n) = \{A \in GL(n) \mid \det A = 1\}$
- Special orthogonal group

$$SO(n) = \{A \in GL(n) \mid AA^{\top} = Id_n, \det A = 1\}$$

Have connections to many areas of algebra, e.g. number theory and finite group theory

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of srep_n(C) for all unipotent classes $C \subseteq \text{Spin}(n)$
 - Detect patterns and derive theoretical results

Classification

- Every linear algebraic group can be "split up" into a finite part, a solvable part and a semisimple part
- Every semisimple group is product of simple linear algebraic groups
- Simples are building blocks for semisimples

Classification

- Every linear algebraic group can be "split up" into a finite part, a solvable part and a semisimple part
- Every semisimple group is product of simple linear algebraic groups
- Simples are building blocks for semisimples
- Simples can be classified by combinatorial data (Dynkin Diagrams)!

∃ ► < ∃ ►</p>

Spin Groups

- Among simple linear algebraic groups is family of spin groups Spin(n)
- Important objects of study
- "Problem": not constructed as a subgroup of GL, but abstractly
- To study Spin(n), use representations

Spin Representation

Definition

A (matrix) representation of a group G is a group homomorphism $G \rightarrow GL(m)$ for some $m \in \mathbb{Z}_{>0}$.

- Allows to study groups via matrices and linear algebra which we know well!
- In case of spin groups, study the spin representation

$$\operatorname{srep}_n \colon \operatorname{Spin}(n) \to \operatorname{GL}(2^{\lfloor \frac{n}{2} \rfloor})$$

that arises naturally

Unipotent Elements

Definition

 $A \in GL(n)$ is called unipotent if all its eigenvalues are 1.

- Unipotent elements play important role in structure theory of linear algebraic groups
- Are interested in their Jordan normal form because it encodes a lot of information

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)

• Find a way to compute the Jordan normal form of srep_n(C) for all unipotent classes $C \subseteq \text{Spin}(n)$

• Detect patterns and derive theoretical results

Main Problem of my Thesis

Main Problem, 1st Formulation

For $u \in \text{Spin}(n)$ unipotent, find the Jordan normal form of $\text{srep}_n(u)$

A = N A = N = I = 000

Main Problem of my Thesis

Main Problem, 1st Formulation

For $u \in \text{Spin}(n)$ unipotent, find the Jordan normal form of $\text{srep}_n(u)$

- Observation: If A, B ∈ GL(m), then A and BAB⁻¹ have same Jordan normal form
- Suffices to consider conjugacy classes {xux⁻¹ | x ∈ Spin(n)} of unipotent elements u

Main Problem

For $C \subseteq \text{Spin}(n)$ unipotent class, find the Jordan normal form of srep_n(C)

◆母 ▶ ▲ ∃ ▶ ▲ ∃ ▶ ∃ 目 ■ の Q @

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_n(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
 - Detect patterns and derive theoretical results

Construction of Spin(n)

 $\begin{array}{l} V := K^n, \ Q := \sum_{i=1}^n X_i X_{n+1-i} \text{ quadratic form on } V. \\ T(V) = K \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots \text{ tensor algebra of } V \end{array}$

Definition

The Clifford algebra of Q is $Cliff(n) := T(V)/\langle v \otimes v - Q(v) | v \in V \rangle$

Note: $V \subseteq \text{Cliff}(n)$ generates Cliff(n), $v^2 = Q(v) \in \text{Cliff}(n)$

(日本)

Construction of Spin(n)

$$V := K^n, \ Q := \sum_{i=1}^n X_i X_{n+1-i} \text{ quadratic form on } V.$$

$$T(V) = K \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots \text{ tensor algebra of } V$$

Definition

The Clifford algebra of Q is $Cliff(n) := T(V)/\langle v \otimes v - Q(v) \mid v \in V \rangle$

Note: $V \subseteq \text{Cliff}(n)$ generates Cliff(n), $v^2 = Q(v) \in \text{Cliff}(n)$

Definition

 $Spin(n) := \{x \in Cliff(n)^{\times} \mid xVx^{-1} \subseteq V, \text{ plus some normalizing condition}\}$

Example (Low dimensions)

$$Spin(1) = \{\pm 1\}, Spin(2) \cong K^{\times}, Spin(3) \cong SL(2).$$

Construction of Spin(n)

Definition

 $\mathsf{Spin}(n) := \{x \in \mathsf{Cliff}(n)^{\times} \mid xVx^{-1} \subseteq V, \text{ plus some normalizing condition}\}$

• For $x \in \text{Spin}(n)$ let $\varphi_x \colon V \to V, \ v \mapsto xvx^{-1}$. Get exact sequence

$$1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Spin}(n) \xrightarrow{\varphi} \operatorname{SO}(n) \longrightarrow 1$$
$$x \longmapsto \varphi_{x}$$

- Closely relates Spin(n) and SO(n)!
- Have generating system:

$$\operatorname{Spin}(n) = \langle uv \mid u, v \in V, Q(u) = Q(v) = -1 \rangle.$$

白 ト イヨト イヨト ヨヨ のくら

Spin Representation

- Depending on parity of *n*, Cliff(*n*) only has 1 resp. 2 irreducible representations
- Spin representation srep_n: Spin(n) \rightarrow GL($2^{\lfloor \frac{n}{2} \rfloor}$) is restriction of irreducible representation of Cliff(n) (independent of choice)

Spin Representation

- Depending on parity of *n*, Cliff(*n*) only has 1 resp. 2 irreducible representations
- Spin representation srep_n: Spin(n) \rightarrow GL($2^{\lfloor \frac{n}{2} \rfloor}$) is restriction of irreducible representation of Cliff(n) (independent of choice)
- srep_n can be computed on generating system of Spin(n)

Example (n = 2)

Here, can give full description:

$$\mathsf{srep}_2\colon \mathsf{Spin}(2)\cong \mathcal{K}^{ imes}
ightarrow\mathsf{GL}(2), \ t\mapsto egin{pmatrix}t&&\\&t^{-1}\end{pmatrix}$$

For bigger *n* more complicated and less explicit!

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)

 Find a way to compute the Jordan normal form of srep_n(C) for all unipotent classes C ⊆ Spin(n)

• Detect patterns and derive theoretical results

Determining the Unipotent Classes of Spin(n)

- Group homomorphism φ: Spin(n) → SO(n) induces bijection between unipotent classes of Spin(n) and SO(n)
- Unipotent conjugacy classes of SO(*n*) well-known! Are described in terms of Jordan normal forms
- Finitely many and can easily be computed

$$\begin{array}{c} \mathsf{Spin}(n) \xrightarrow{\varphi} \mathsf{SO}(n) \\ \{\mathsf{unip. classes of } \mathsf{Spin}(n)\} \xleftarrow{1:1} \{\mathsf{unip. classes of } \mathsf{SO}(n)\} \\ & \swarrow \\ & \mathsf{easy!} \end{array}$$

Situation for very small n

Example (n = 1)

Only one unipotent class in Spin(1), the class of the identity element e. Have srep $_1(e) = (1) \in \mathsf{GL}(1) \checkmark$

Example (n = 2)

Again only the class of $e \in \text{Spin}(2)$. Here, $\operatorname{srep}_2(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \checkmark$

- For $n \ge 3$ more than one unipotent class
- Cannot compute srep_n explicitly for all classes

◆母 ▶ ▲ ∃ ▶ ▲ ∃ ▶ ∃ 目 ■ の Q @

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)

• Find a way to compute the Jordan normal form of $\operatorname{srep}_n(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$

Detect patterns and derive theoretical results

Approach to the Problem

 For 1 ≤ r < n established inclusion Spin(r) ⊆ Spin(n) and group homomorphism

$$\beta$$
: Spin(r) × Spin(n - r) \rightarrow Spin(n)

- Idea to tackle Main Problem: Restrict spin representation and use induction!
- Two questions arising:
 - 1. How does restriction of srep_n look like?
 - 2. Which unipotent classes are in the image of β ?

Q1: How does restriction of srep_n look like?

Known result:

Theorem (Meinrenken)

$$\operatorname{srep}_{n}|_{\operatorname{Spin}(n-1)} = \begin{cases} \operatorname{srep}_{n-1} \oplus \operatorname{srep}_{n-1}, & n \text{ even}, \\ \operatorname{srep}_{n-1}, & n \text{ odd}. \end{cases}$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 つく⊙

Q1: How does restriction of $srep_n$ look like?

Known result:

Theorem (Meinrenken)

$$\operatorname{srep}_{n} \big|_{\operatorname{Spin}(n-1)} = \begin{cases} \operatorname{srep}_{n-1} \oplus \operatorname{srep}_{n-1}, & n \text{ even}, \\ \operatorname{srep}_{n-1}, & n \text{ odd}. \end{cases}$$

- Proof relies on representation theory of Clifford algebras
- Approach can be adapted to the situation

$$\beta$$
: Spin(r) × Spin(n - r) \rightarrow Spin(n)!

A B < A B </p>

Q1: How does restriction of srep_n look like?

General statement needs:

Definition

Let $A \in GL(s)$, $B \in GL(t)$. The Kronecker product of A and B is

$$A \otimes B := \begin{pmatrix} a_{11}B & \cdots & a_{1s}B \\ \vdots & \ddots & \vdots \\ a_{s1}B & \cdots & a_{ss}B \end{pmatrix} \in \mathsf{GL}(st).$$

A = A = A = A = A = A = A

Q1: How does restriction of $srep_n$ look like?

General statement needs:

Definition

Let $A \in GL(s)$, $B \in GL(t)$. The Kronecker product of A and B is

$$A \otimes B := \begin{pmatrix} a_{11}B & \cdots & a_{1s}B \\ \vdots & \ddots & \vdots \\ a_{s1}B & \cdots & a_{ss}B \end{pmatrix} \in \mathsf{GL}(st).$$

Definition

Let $\rho: G \to GL(s), \sigma: H \to GL(t)$ representations of groups G, H. Then

 $\rho \otimes \sigma \colon G \times H \to \mathsf{GL}(st), \ (g,h) \mapsto \rho(g) \otimes \sigma(h)$

is a representation of $G \times H$, the tensor product of ρ and σ .

Q1: How does restriction of srep_n look like?

Restriction Theorem (A.)

Let $1 \le r < n$ and β : Spin $(r) \times$ Spin $(n - r) \rightarrow$ Spin(n) as before. Then

$$\operatorname{srep}_{n} \circ \beta = \begin{cases} (\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}) \oplus (\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}), & n \text{ even, } r \text{ odd}_{r} \\ \operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}, & \text{else} \end{cases}$$

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Q1: How does restriction of srep_n look like?

Restriction Theorem (A.)

Let $1 \le r < n$ and β : Spin $(r) \times$ Spin $(n - r) \rightarrow$ Spin(n) as before. Then

$$\operatorname{srep}_{n} \circ \beta = \begin{cases} (\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}) \oplus (\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}), & n \text{ even, } r \text{ odd}_{r} \\ \operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}, & \text{else} \end{cases}$$

- For r = 1 retrieve old result
- Can be refined for irreducible constituents of srep_n
- Thus in im β ⊆ Spin(n) can use lower-dimensional results!
 Kronecker product easy to compute

Q2: Which unipotent classes are in the image of β ?

- Have commutative diagram with simple map on the SO-side
- Allows to check question for classes of SO where this is easy!

$$\begin{array}{c} \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) & \xrightarrow{\beta} \operatorname{Spin}(n) \\ & \downarrow & \qquad \qquad \downarrow \varphi \\ \operatorname{SO}(r) \times \operatorname{SO}(n-r) & \longrightarrow \operatorname{SO}(n) \\ & (A,B) & \longmapsto & \begin{pmatrix} A \\ & B \end{pmatrix} \end{array}$$

Q2: Which unipotent classes are in the image of β ?

- Have commutative diagram with simple map on the SO-side
- Allows to check question for classes of SO where this is easy!

$$\begin{array}{c} \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) & \stackrel{\beta}{\longrightarrow} \operatorname{Spin}(n) \\ & \downarrow & \qquad \qquad \downarrow \varphi \\ \operatorname{SO}(r) \times \operatorname{SO}(n-r) & \longrightarrow \operatorname{SO}(n) \\ & (A,B) & \longmapsto & \begin{pmatrix} A \\ & B \end{pmatrix} \end{array}$$

- Turns out: Except for one unipotent class, a member of every class is in the image of beta!
- Remains to compute Jordan blocks for exceptional class

Dealing with the Exceptional Class

- Determined root subgroups *U_i* of spin group which reveal a lot of its structure
- Can be described using generating system of Spin(*n*)

Dealing with the Exceptional Class

- Determined root subgroups U_i of spin group which reveal a lot of its structure
- Can be described using generating system of Spin(*n*)

- Exceptional class has explicit description in terms of the U_i and therefore in terms of the generators of Spin(n)
- Jordan blocks of exceptional class can be computed directly!

Computation of the Jordan Blocks of Unipotent Classes

- $n = 1, 2 \checkmark$
- n ≥ 3: Jordan blocks for all unipotent classes except one can be computed inductively using Restriction Theorem
- Blocks of the exceptional class can be computed directly using knowledge on root subgroups

Gives recursive algorithm. Has been implemented in the Computer Algebra System GAP

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep_n
- Determine the unipotent classes of Spin(n)

• Find a way to compute the Jordan normal form of srep_n(C) for all nipotent classes $C \subseteq \text{Spin}(n)$

• Detect patterns and derive theoretical results

A ∃ ► 3 | = 4 € ►

Results – Notation

- Recall: all eigenvalues of unipotent elements are 1. Same holds for image under spin representation
- If a block of size *s* occurs with multiplicity *m*, write *s^m*, e.g.

For simplicity, unipotent classes have no specific labels

Results in Low Dimensions

n	Class	Jordan blocks
1	C_{11}	1
2	<i>C</i> ₂₁	1 ²
3	<i>C</i> ₃₁	1 ²
	<i>C</i> ₃₂	2
4	C_{41}	14
	C ₄₂	2 ²
	C ₄₃	1 ² , 2
	C ₄₄	1 ² , 2

n	Class	Jordan blocks
5	C ₅₁ C ₅₂ C ₅₃ C ₅₄	1 ⁴ 2 ² 1 ² , 2 4
6	$\begin{array}{c} C_{61} \\ C_{62} \\ C_{63} \\ C_{64} \\ C_{65} \end{array}$	1 ⁸ 2 ⁴ 1 ⁴ , 2 ² 4 ² 1 ² , 3 ²

▲ 문 ▶ ▲ 문 ▶ 문 범 같 ● Q Q @

Dependence on Characteristic

Blocks only depend on char(K) up to a certain extent:

Theorem (A.)

For each n there exists a minimal bound $B_n \in \mathbb{Z}_{\geq 0}$ such that the Jordan blocks for Spin(n) in any characteristic $\geq B_n$ are the same as the ones in characteristic 0.

Have $B_n = 0$ precisely for $n \le 8$.

Results in Low Dimensions

n	Class	Jordan blocks
1	<i>C</i> ₁₁	1
2	<i>C</i> ₂₁	1 ²
3	C ₃₁	1 ²
	<i>C</i> ₃₂	2
4	C_{41}	14
	C ₄₂	2 ²
	C ₄₃	1 ² , 2
	C ₄₄	1 ² , 2

n	Class	Jordan blocks
5	C ₅₁ C ₅₂ C ₅₃ C ₅₄	1 ⁴ 2 ² 1 ² , 2 4
6	$C_{61} \\ C_{62} \\ C_{63} \\ C_{64} \\ C_{65}$	1 ⁸ 2 ⁴ 1 ⁴ , 2 ² 4 ² 1 ² , 3 ²

▲ 문 ▶ ▲ 문 ▶ 로 범 = ● ○ ○ ○

Block Structure

Theorem (Malle–A.)

For $n \ge 7$, every unipotent class has at least two Jordan blocks.

n	Class	Jordan blocks
7	C ₇₁	1 ⁸
	C ₇₂	2 ⁴
	C ₇₃	1 ⁴ , 2 ²
	C ₇₄	4 ²
	C ₇₅	1 ² , 3 ²
	C ₇₆	1, 2 ² , 3
	C ₇₇	1, 7

3 E S

글 제 제 글 제

Block Structure

Theorem (Malle-A.)

For $n \ge 7$, every unipotent class has at least two Jordan blocks.

n	Class	Jordan blocks
7	C ₇₁	18
	C ₇₂	2 ⁴
	C ₇₃	1 ⁴ , 2 ²
	C ₇₄	4 ²
	C ₇₅	1 ² , 3 ²
	C ₇₆	1, 2 ² , 3
	C ₇₇	1, 7

Theorem (A.)

- If n ≡ 0, 1, 7 mod 8, then even sized blocks occur with an even multiplicity.
- If n ≡ 3, 4, 5 mod 8, then odd sized blocks occur with an even multiplicity.

• • = • • = •

Block Structure

Theorem (Malle-A.)

For $n \ge 7$, every unipotent class has at least two Jordan blocks.

n	Class	Jordan blocks
7	C ₇₁	18
	C ₇₂	2 ⁴
	C ₇₃	1 ⁴ , 2 ²
	C ₇₄	4 ²
	C ₇₅	1 ² , 3 ²
	C ₇₆	1, 2 ² , 3
	C ₇₇	1, 7

Theorem (A.)

- If n ≡ 0, 1, 7 mod 8, then even sized blocks occur with an even multiplicity.
- If n ≡ 3, 4, 5 mod 8, then odd sized blocks occur with an even multiplicity.

• • = • • = •

Summary

Context

- Linear algebraic groups combine group theory with algebraic geometry; one of their building blocks are spin groups
- Structure of Spin(n) influenced by unipotent elements

Results of Thesis

- Created algorithm that for every unipotent class C of Spin(n) determines Jordan normal form of srep_n(C). Based on:
 - Restriction Theorem \rightarrow Induction
 - Knowledge of root subgroups \rightarrow Exceptional class
- Derived some theoretical results

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Thank you!

三日 のへの

- 4 回 ト 4 三 ト 4 三 ト

Appendix – Results with Original Labels

n	Class	Jordan blocks
1	(1)	1
2	(1^2)	1 ²
3	(1^3)	1 ²
	(3)	2
4	(1^4)	14
	(1, 3)	2 ²
	$(2^2)_0$	1 ² , 2
	$(2^2)_1$	1 ² , 2

n	Class	Jordan blocks
5	(1^5)	14
	$(1^2, 3)$	$ 2^2$
	$(1, 2^2)$	1 ² , 2
	(5)	4
6	(1^6)	1 ⁸
	(1 ³ , 3)	2 ⁴
	$(1^2, 2^2)$	1 ⁴ , 2 ²
	(1, 5)	4 ²
	(3^2)	1 ² , 3 ²

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 つく⊙

Appendix - Results in Dimension 9

	Jordan blocks		
Class	$char(K) \neq 3$	char(K) = 3	
(1 ⁹)	1^{16}	1^{16}	
$(1^{6}, 3)$	2 ⁸	2 ⁸	
$(1^5, 2^2)$	1 ⁸ , 2 ⁴	1 ⁸ , 2 ⁴	
$(1^4, 5)$	4 ⁴	4 ⁴	
$(1^3, 3^2)$	1 ⁴ , 3 ⁴	1 ⁴ , 3 ⁴	
$(1^2, 2^2, 3)$	1 ² , 2 ⁴ , 3 ²	1 ² , 2 ⁴ , 3 ²	
$(1^2,7)$	$1^2, 7^2$	$1^2, 7^2$	
(1, 3, 5)	3 ² , 5 ²	3 ² , 5 ²	
$(1, 2^4)$	1 ⁵ , 2 ⁴ , 3	1 ⁵ , 2 ⁴ , 3	
$(1, 4^2)$	1 ³ , 4 ² , 5	1 ³ , 4 ² , 5	
$(2^2, 5)$	3, 4 ² , 5	3, 4 ² , 5	
(3 ³)	2 ⁴ , 4 ²	2 ² , 3 ⁴	
(9)	5, 11	7, 9	

Appendix – Restriction Theorem

Theorem (A.)

Let n even. Then $\operatorname{srep}_n = \operatorname{srep}_n^+ \oplus \operatorname{srep}_n^-$ where srep_n^+ and srep_n^- are irreducible, inequivalent and of the same dimension. Let $1 \leq r < n$ and β : $\operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \to \operatorname{Spin}(n)$. If r is odd, then

$$\operatorname{srep}_n^{\pm} \circ \beta = \operatorname{srep}_r \otimes \operatorname{srep}_{n-r}$$
.

If r is even, then

$$srep_{n}^{+} \circ \beta = (srep_{r}^{+} \oplus srep_{n-r}^{+}) \otimes (srep_{r}^{-} \oplus srep_{n-r}^{-}),$$

$$srep_{n}^{-} \circ \beta = (srep_{r}^{+} \oplus srep_{n-r}^{-}) \otimes (srep_{r}^{-} \oplus srep_{n-r}^{+}).$$