Jordan Blocks of Unipotent Elements in Spin Groups

Robin Ammon

TU Kaiserslautern
26 March 2021

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

The Setting

Groups
fundamental

math. objects | Matrices |
| :---: |
| tool to study |
| math. objects |

The Setting

Algebraic Geometry
studies solution sets of polynomial equations

The Setting

Linear Algebraic Groups

Throughout: K algebraically closed field with $\operatorname{char}(K) \neq 2, n \in \mathbb{Z}_{>0}$, $\mathrm{GL}(n):=\mathrm{GL}(n, K)$

Definition

An affine variety (over K) is the common zero locus in K^{n} of a set of polynomials $S \subseteq K\left[X_{1}, \ldots, X_{n}\right]$.

Linear Algebraic Groups

Throughout: K algebraically closed field with $\operatorname{char}(K) \neq 2, n \in \mathbb{Z}_{>0}$, $\mathrm{GL}(n):=\mathrm{GL}(n, K)$

Definition

An affine variety (over K) is the common zero locus in K^{n} of a set of polynomials $S \subseteq K\left[X_{1}, \ldots, X_{n}\right]$.

Definition

A group G is a linear algebraic group if it is an affine variety and the group operations $G \times G \rightarrow G,(x, y) \mapsto x y$ and $G \rightarrow G, x \mapsto x^{-1}$ are given by polynomial equations in the coordinates.

- Analogous to Lie groups, topological groups
- Methods from both group theory and algebraic geometry available, giving powerful theory

Linear Algebraic Groups

Example

- $(K,+)$ is zero locus of $0 \in K[X]$ and a linear algebraic group
- $\mathrm{GL}(n) \cong\left\{(A, y) \in K^{n \times n} \times K \mid \operatorname{det} A \cdot y=1\right\}$ is linear algebraic group

Term "linear" refers to the following fact:

Theorem

Every linear algebraic group is isomorphic to a linear algebraic group contained in $\mathrm{GL}(r)$ for some $r \in \mathbb{Z}_{>0}$.

Linear Algebraic Groups

Alternative Definition

A linear algebraic group (over K) is a subgroup of $\mathrm{GL}(n)$ that is defined by polynomial equations for the matrix entries.

Linear Algebraic Groups

Alternative Definition

A linear algebraic group (over K) is a subgroup of $\mathrm{GL}(n)$ that is defined by polynomial equations for the matrix entries.

Example

- Special linear group $\mathrm{SL}(n)=\{A \in \mathrm{GL}(n) \mid \operatorname{det} A=1\}$
- Special orthogonal group

$$
\mathrm{SO}(n)=\left\{A \in \mathrm{GL}(n) \mid A A^{\top}=\operatorname{ld}_{n}, \operatorname{det} A=1\right\}
$$

Have connections to many areas of algebra, e.g. number theory and finite group theory

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

Classification

- Every linear algebraic group can be "split up" into a finite part, a solvable part and a semisimple part
- Every semisimple group is product of simple linear algebraic groups
- Simples are building blocks for semisimples

Classification

- Every linear algebraic group can be "split up" into a finite part, a solvable part and a semisimple part
- Every semisimple group is product of simple linear algebraic groups
- Simples are building blocks for semisimples
- Simples can be classified by combinatorial data (Dynkin Diagrams)!

Spin Groups

- Among simple linear algebraic groups is family of spin groups $\operatorname{Spin}(n)$
- Important objects of study
- "Problem": not constructed as a subgroup of GL, but abstractly

- To study $\operatorname{Spin}(n)$, use representations

Spin Representation

Definition

A (matrix) representation of a group G is a group homomorphism
$G \rightarrow G L(m)$ for some $m \in \mathbb{Z}_{>0}$.

- Allows to study groups via matrices and linear algebra which we know well!
- In case of spin groups, study the spin representation

$$
\operatorname{srep}_{n}: \operatorname{Spin}(n) \rightarrow \mathrm{GL}\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}\right)
$$

that arises naturally

Unipotent Elements

Definition

$A \in \mathrm{GL}(n)$ is called unipotent if all its eigenvalues are 1 .

- Unipotent elements play important role in structure theory of linear algebraic groups
- Are interested in their Jordan normal form because it encodes a lot of information

Jordan Blocks

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

Main Problem of my Thesis

Main Problem, 1st Formulation

For $u \in \operatorname{Spin}(n)$ unipotent, find the Jordan normal form of $\operatorname{srep}_{n}(u)$

Main Problem of my Thesis

Main Problem, 1st Formulation

For $u \in \operatorname{Spin}(n)$ unipotent, find the Jordan normal form of $\operatorname{srep}_{n}(u)$

- Observation: If $A, B \in \mathrm{GL}(m)$, then A and $B A B^{-1}$ have same Jordan normal form
- Suffices to consider conjugacy classes $\left\{x u x^{-1} \mid x \in \operatorname{Spin}(n)\right\}$ of unipotent elements u

Main Problem

For $C \subseteq \operatorname{Spin}(n)$ unipotent class, find the Jordan normal form of $\operatorname{srep}_{n}(C)$

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze $\operatorname{Spin}(n)$ and srep_{n}
- Determine the unipotent classes of $\operatorname{Spin}(n)$
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

Construction of $\operatorname{Spin}(n)$

$V:=K^{n}, Q:=\sum_{i=1}^{n} X_{i} X_{n+1-i}$ quadratic form on V. $T(V)=K \oplus V \oplus(V \otimes V) \oplus(V \otimes V \otimes V) \oplus \cdots$ tensor algebra of V

Definition

The Clifford algebra of Q is $\operatorname{Cliff}(n):=T(V) /\langle v \otimes v-Q(v) \mid v \in V\rangle$
Note: $V \subseteq \operatorname{Cliff}(n)$ generates $\operatorname{Cliff}(n), v^{2}=Q(v) \in \operatorname{Cliff}(n)$

Construction of $\operatorname{Spin}(n)$

$V:=K^{n}, Q:=\sum_{i=1}^{n} X_{i} X_{n+1-i}$ quadratic form on V.
$T(V)=K \oplus V \oplus(V \otimes V) \oplus(V \otimes V \otimes V) \oplus \cdots$ tensor algebra of V

Definition

The Clifford algebra of Q is $\operatorname{Cliff}(n):=T(V) /\langle v \otimes v-Q(v) \mid v \in V\rangle$
Note: $V \subseteq \operatorname{Cliff}(n)$ generates $\operatorname{Cliff}(n), v^{2}=Q(v) \in \operatorname{Cliff}(n)$

Definition

$\operatorname{Spin}(n):=\left\{x \in \operatorname{Cliff}(n)^{\times} \mid x V x^{-1} \subseteq V\right.$, plus some normalizing condition $\}$
Example (Low dimensions)
$\operatorname{Spin}(1)=\{ \pm 1\}, \quad \operatorname{Spin}(2) \cong K^{\times}, \quad \operatorname{Spin}(3) \cong \operatorname{SL}(2)$.

Construction of $\operatorname{Spin}(n)$

Definition

$\operatorname{Spin}(n):=\left\{x \in \operatorname{Cliff}(n)^{\times} \mid x V x^{-1} \subseteq V\right.$, plus some normalizing condition $\}$

- For $x \in \operatorname{Spin}(n)$ let $\varphi_{x}: V \rightarrow V, v \mapsto x v x^{-1}$. Get exact sequence

$$
\begin{gathered}
1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Spin}(n) \xrightarrow{\varphi} \mathrm{SO}(n) \longrightarrow 1 \\
x \longmapsto \varphi_{x}
\end{gathered}
$$

- Closely relates $\operatorname{Spin}(n)$ and $\mathrm{SO}(n)$!
- Have generating system:

$$
\operatorname{Spin}(n)=\langle u v \mid u, v \in V, Q(u)=Q(v)=-1\rangle .
$$

Spin Representation

- Depending on parity of $n, \operatorname{Cliff}(n)$ only has 1 resp. 2 irreducible representations
- Spin representation $\operatorname{srep}_{n}: \operatorname{Spin}(n) \rightarrow \mathrm{GL}\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}\right)$ is restriction of irreducible representation of $\operatorname{Cliff}(n)$ (independent of choice)

Spin Representation

- Depending on parity of $n, \operatorname{Cliff}(n)$ only has 1 resp. 2 irreducible representations
- Spin representation $\operatorname{srep}_{n}: \operatorname{Spin}(n) \rightarrow G L\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}\right)$ is restriction of irreducible representation of $\operatorname{Cliff}(n)$ (independent of choice)
- srep_{n} can be computed on generating system of $\operatorname{Spin}(n)$

Example $(n=2)$

Here, can give full description:

$$
\operatorname{srep}_{2}: \operatorname{Spin}(2) \cong K^{\times} \rightarrow \mathrm{GL}(2), t \mapsto\left(\begin{array}{ll}
t & \\
& t^{-1}
\end{array}\right)
$$

For bigger n more complicated and less explicit!

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srepn
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

Determining the Unipotent Classes of $\operatorname{Spin}(n)$

- Group homomorphism $\varphi: \operatorname{Spin}(n) \rightarrow \mathrm{SO}(n)$ induces bijection between unipotent classes of $\operatorname{Spin}(n)$ and $\mathrm{SO}(n)$
- Unipotent conjugacy classes of $\mathrm{SO}(n)$ well-known! Are described in terms of Jordan normal forms
- Finitely many and can easily be computed

$$
\operatorname{Spin}(n) \xrightarrow{\varphi} \mathrm{SO}(n)
$$

$\{$ unip. classes of $\operatorname{Spin}(n)\} \stackrel{1: 1}{\longleftrightarrow}\{$ unip. classes of $\operatorname{SO}(n)\}$ easy!

Situation for very small n

Example ($n=1$)

Only one unipotent class in Spin(1), the class of the identity element e. Have $\operatorname{srep}_{1}(e)=(1) \in G L(1) \checkmark$

Example $(n=2)$
Again only the class of $e \in \operatorname{Spin}(2)$. Here, $\operatorname{srep}_{2}(e)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right) \checkmark$

- For $n \geq 3$ more than one unipotent class
- Cannot compute srep $_{n}$ explicitly for all classes 2

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

Approach to the Problem

- For $1 \leq r<n$ established inclusion $\operatorname{Spin}(r) \subseteq \operatorname{Spin}(n)$ and group homomorphism

$$
\beta: \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \rightarrow \operatorname{Spin}(n)
$$

- Idea to tackle Main Problem: Restrict spin representation and use induction!
- Two questions arising:

1. How does restriction of srep $_{n}$ look like?
2. Which unipotent classes are in the image of β ?

Q1: How does restriction of srep $_{n}$ look like?

Known result:
Theorem (Meinrenken)

$$
\left.\operatorname{srep}_{n}\right|_{\operatorname{Spin}(n-1)}= \begin{cases}\operatorname{srep}_{n-1} \oplus \operatorname{srep}_{n-1}, & n \text { even } \\ \operatorname{srep}_{n-1}, & n \text { odd }\end{cases}
$$

Q1: How does restriction of srep $_{n}$ look like?

Known result:
Theorem (Meinrenken)

$$
\left.\operatorname{srep}_{n}\right|_{\operatorname{Spin}(n-1)}= \begin{cases}\operatorname{srep}_{n-1} \oplus \operatorname{srep}_{n-1}, & n \text { even }, \\ \operatorname{srep}_{n-1}, & n \text { odd }\end{cases}
$$

- Proof relies on representation theory of Clifford algebras
- Approach can be adapted to the situation

$$
\beta: \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \rightarrow \operatorname{Spin}(n)!
$$

Q1: How does restriction of srep $_{n}$ look like?
General statement needs:

Definition

Let $A \in \mathrm{GL}(s), B \in \mathrm{GL}(t)$. The Kronecker product of A and B is

$$
A \otimes B:=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 s} B \\
\vdots & \ddots & \vdots \\
a_{s 1} B & \cdots & a_{s s} B
\end{array}\right) \in \mathrm{GL}(s t) .
$$

Q1: How does restriction of srep $_{n}$ look like?
General statement needs:

Definition

Let $A \in \mathrm{GL}(s), B \in \mathrm{GL}(t)$. The Kronecker product of A and B is

$$
A \otimes B:=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 s} B \\
\vdots & \ddots & \vdots \\
a_{s 1} B & \cdots & a_{s s} B
\end{array}\right) \in \mathrm{GL}(s t)
$$

Definition

Let $\rho: G \rightarrow \mathrm{GL}(s), \sigma: H \rightarrow \mathrm{GL}(t)$ representations of groups G, H. Then

$$
\rho \otimes \sigma: G \times H \rightarrow \mathrm{GL}(s t), \quad(g, h) \mapsto \rho(g) \otimes \sigma(h)
$$

is a representation of $G \times H$, the tensor product of ρ and σ.

Q1: How does restriction of srep $_{n}$ look like?

Restriction Theorem (A.)

Let $1 \leq r<n$ and $\beta: \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \rightarrow \operatorname{Spin}(n)$ as before. Then

$$
\operatorname{srep}_{n} \circ \beta= \begin{cases}\left(\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}\right) \oplus\left(\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}\right), & n \text { even, } r \text { odd } \\ \operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}, & \text { else }\end{cases}
$$

Q1: How does restriction of srep $_{n}$ look like?

Restriction Theorem (A.)

Let $1 \leq r<n$ and $\beta: \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \rightarrow \operatorname{Spin}(n)$ as before. Then

$$
\operatorname{srep}_{n} \circ \beta= \begin{cases}\left(\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}\right) \oplus\left(\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}\right), & n \text { even, } r \text { odd } \\ \operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}, & \text { else }\end{cases}
$$

- For $r=1$ retrieve old result
- Can be refined for irreducible constituents of srep ${ }_{n}$
- Thus in im $\beta \subseteq \operatorname{Spin}(n)$ can use lower-dimensional results! Kronecker product easy to compute

Q2: Which unipotent classes are in the image of β ?

- Have commutative diagram with simple map on the SO-side

$$
\begin{array}{r}
\operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \xrightarrow{\beta} \operatorname{Spin}(n) \\
\stackrel{\downarrow}{\operatorname{SO}(r) \times \mathrm{SO}(n-r)} \longrightarrow \\
(A, B) \longmapsto\left(\begin{array}{cc}
A & \\
& B
\end{array}\right)
\end{array}
$$

Q2: Which unipotent classes are in the image of β ?

- Have commutative diagram with simple map on the SO-side

- Turns out: Except for one unipotent class, a member of every class is in the image of beta!
- Remains to compute Jordan blocks for exceptional class

Dealing with the Exceptional Class

- Determined root subgroups U_{i} of spin group which reveal a lot of its structure
- Can be described using generating
 system of $\operatorname{Spin}(n)$

Dealing with the Exceptional Class

- Determined root subgroups U_{i} of spin group which reveal a lot of its structure
- Can be described using generating
 system of $\operatorname{Spin}(n)$
- Exceptional class has explicit description in terms of the U_{i} and therefore in terms of the generators of $\operatorname{Spin}(n)$
- Jordan blocks of exceptional class can be computed directly!

Computation of the Jordan Blocks of Unipotent Classes

- $n=1,2 \checkmark$
- $n \geq 3$: Jordan blocks for all unipotent classes except one can be computed inductively using Restriction Theorem
- Blocks of the exceptional class can be computed directly using knowledge on root subgroups

Gives recursive algorithm. Has been implemented in the Computer Algebra System GAP

Outline

1. Introduction to the Topic

- Overview
- The Protagonists
- Main Problem

2. Tackling the Main Problem

- Construct and analyze Spin(n) and srep n
- Determine the unipotent classes of Spin(n)
- Find a way to compute the Jordan normal form of $\operatorname{srep}_{n}(C)$ for all unipotent classes $C \subseteq \operatorname{Spin}(n)$
- Detect patterns and derive theoretical results

Results - Notation

- Recall: all eigenvalues of unipotent elements are 1 . Same holds for image under spin representation
- If a block of size s occurs with multiplicity m, write s^{m}, e.g.

- For simplicity, unipotent classes have no specific labels

Results in Low Dimensions

n	Class	Jordan blocks
1	C_{11}	1
2	C_{21}	1^{2}
3	C_{31}	1^{2}
	C_{32}	2
4	C_{41}	1^{4}
	C_{42}	2^{2}
	C_{43}	$1^{2}, 2$
	C_{44}	$1^{2}, 2$

n	Class	Jordan blocks
5	C_{51}	1^{4}
	C_{52}	2^{2}
	C_{53}	$1^{2}, 2$
	C_{54}	4
6	C_{61}	1^{8}
	C_{62}	2^{4}
	C_{63}	$1^{4}, 2^{2}$
	C_{64}	4^{2}
	C_{65}	$1^{2}, 3^{2}$

Dependence on Characteristic

Blocks only depend on char (K) up to a certain extent:

Theorem (A.)

For each n there exists a minimal bound $B_{n} \in \mathbb{Z}_{\geq 0}$ such that the Jordan blocks for $\operatorname{Spin}(n)$ in any characteristic $\geq B_{n}$ are the same as the ones in characteristic 0 .

Have $B_{n}=0$ precisely for $n \leq 8$.

Results in Low Dimensions

n	Class	Jordan blocks
1	C_{11}	1
2	C_{21}	1^{2}
3	C_{31}	1^{2}
	C_{32}	2
4	C_{41}	1^{4}
	C_{42}	2^{2}
	C_{43}	$1^{2}, 2$
	C_{44}	$1^{2}, 2$

n	Class	Jordan blocks
5	C_{51}	1^{4}
	C_{52}	2^{2}
	C_{53}	$1^{2}, 2$
	C_{54}	4
6	C_{61}	1^{8}
	C_{62}	2^{4}
	C_{63}	$1^{4}, 2^{2}$
	C_{64}	4^{2}
	C_{65}	$1^{2}, 3^{2}$

Block Structure

Theorem (Malle-A.)

For $n \geq 7$, every unipotent class has at least two Jordan blocks.

n	Class	Jordan blocks
7	C_{71}	1^{8}
	C_{72}	2^{4}
	C_{73}	$1^{4}, 2^{2}$
	C_{74}	4^{2}
	C_{75}	$1^{2}, 3^{2}$
	C_{76}	$1,2^{2}, 3$
	C_{77}	1,7

Block Structure

Theorem (Malle-A.)

For $n \geq 7$, every unipotent class has at least two Jordan blocks.

n	Class	Jordan blocks
7	C_{71}	1^{8}
	C_{72}	2^{4}
	C_{73}	$1^{4}, 2^{2}$
	C_{74}	4^{2}
	C_{75}	$1^{2}, 3^{2}$
	C_{76}	$1,2^{2}, 3$
	C_{77}	1,7

Theorem (A.)

- If $n \equiv 0,1,7 \bmod 8$, then even sized blocks occur with an even multiplicity.
- If $n \equiv 3,4,5 \bmod 8$, then odd sized blocks occur with an even multiplicity.

Block Structure

Theorem (Malle-A.)

For $n \geq 7$, every unipotent class has at least two Jordan blocks.

n	Class	Jordan blocks
7	C_{71}	1^{8}
	C_{72}	2^{4}
	C_{73}	$1^{4}, 2^{2}$
	C_{74}	4^{2}
	C_{75}	$1^{2}, 3^{2}$
	C_{76}	$1,2^{2}, 3$
	C_{77}	1,7

Theorem (A.)

- If $n \equiv 0,1,7 \bmod 8$, then even sized blocks occur with an even multiplicity.
- If $n \equiv 3,4,5 \bmod 8$, then odd sized blocks occur with an even multiplicity.

Summary

Context

- Linear algebraic groups combine group theory with algebraic geometry; one of their building blocks are spin groups
- Structure of $\operatorname{Spin}(n)$ influenced by unipotent elements

Results of Thesis

- Created algorithm that for every unipotent class C of $\operatorname{Spin}(n)$ determines Jordan normal form of $\operatorname{srep}_{n}(C)$. Based on:
- Restriction Theorem \rightarrow Induction
- Knowledge of root subgroups \rightarrow Exceptional class
- Derived some theoretical results

Thank you!

Appendix - Results with Original Labels

n	Class	Jordan blocks
1	(1)	1
2	$\left(1^{2}\right)$	1^{2}
3	$\left(1^{3}\right)$	1^{2}
	(3)	2
4	$\left(1^{4}\right)$	1^{4}
	$(1,3)$	2^{2}
	$\left(2^{2}\right)_{0}$	$1^{2}, 2$
	$\left(2^{2}\right)_{1}$	$1^{2}, 2$

n	Class	Jordan blocks
5	$\left(1^{5}\right)$	1^{4}
	$\left(1^{2}, 3\right)$	2^{2}
	$\left(1,2^{2}\right)$	$1^{2}, 2$
	(5)	4
6	$\left(1^{6}\right)$	1^{8}
	$\left(1^{3}, 3\right)$	2^{4}
	$\left(1^{2}, 2^{2}\right)$	$1^{4}, 2^{2}$
	$(1,5)$	4^{2}
	$\left(3^{2}\right)$	$1^{2}, 3^{2}$

Appendix - Results in Dimension 9

Class	Jordan blocks	
	$\operatorname{char}(K) \neq 3$	$\operatorname{char}(K)=3$
$\left(1^{9}\right)$	1^{16}	1^{16}
$\left(1^{6}, 3\right)$	2^{8}	2^{8}
$\left(1^{5}, 2^{2}\right)$	$1^{8}, 2^{4}$	$1^{8}, 2^{4}$
$\left(1^{4}, 5\right)$	4^{4}	4^{4}
$\left(1^{3}, 3^{2}\right)$	$1^{4}, 3^{4}$	$1^{4}, 3^{4}$
$\left(1^{2}, 2^{2}, 3\right)$	$1^{2}, 2^{4}, 3^{2}$	$1^{2}, 2^{4}, 3^{2}$
$\left(1^{2}, 7\right)$	$1^{2}, 7^{2}$	$1^{2}, 7^{2}$
$(1,3,5)$	$3^{2}, 5^{2}$	$3^{2}, 5^{2}$
$\left(1,2^{4}\right)$	$1^{5}, 2^{4}, 3$	$1^{5}, 2^{4}, 3$
$\left(1,4^{2}\right)$	$1^{3}, 4^{2}, 5$	$1^{3}, 4^{2}, 5$
$\left(2^{2}, 5\right)$	$3,4^{2}, 5$	$3,4^{2}, 5$
$\left(3^{3}\right)$	$2^{4}, 4^{2}$	$2^{2}, 3^{4}$
(9)	5,11	7,9

Appendix - Restriction Theorem

Theorem (A.)

Let n even. Then $\operatorname{srep}_{n}=\operatorname{srep}_{n}^{+} \oplus \operatorname{srep}_{n}^{-}$where srep $_{n}^{+}$and srep ${ }_{n}^{-}$are irreducible, inequivalent and of the same dimension. Let $1 \leq r<n$ and $\beta: \operatorname{Spin}(r) \times \operatorname{Spin}(n-r) \rightarrow \operatorname{Spin}(n)$. If r is odd, then

$$
\operatorname{srep}_{n}^{ \pm} \circ \beta=\operatorname{srep}_{r} \otimes \operatorname{srep}_{n-r}
$$

If r is even, then

$$
\begin{aligned}
& \operatorname{srep}_{n}^{+} \circ \beta=\left(\operatorname{srep}_{r}^{+} \oplus \operatorname{srep}_{n-r}^{+}\right) \otimes\left(\text { srep }_{r}^{-} \oplus \operatorname{srep}_{n-r}^{-}\right) \\
& \operatorname{srep}_{n}^{-} \circ \beta=\left(\operatorname{srep}_{r}^{+} \oplus \operatorname{srep}_{n-r}^{-}\right) \otimes\left(\text { srep }_{r}^{-} \oplus \operatorname{srep}_{n-r}^{+}\right) .
\end{aligned}
$$

