Cohen–Lenstra Heuristics: Distribution of Class Groups of Random Number Fields

Robin Ammon

University of Glasgow

Y-RANT 2022

▶ < ∃ >

The Ideal Class Group

- *K* number field with ring of integers \mathcal{O}_K
- The ideal class group of K is

$$\mathsf{Cl}_{\mathcal{K}} := \frac{\{\text{fractional ideals of } \mathcal{K}\}}{\{\text{principal fractional ideals of } \mathcal{K}\}},$$

which is a finite abelian group

글 에 에 글 어

The Ideal Class Group

- *K* number field with ring of integers \mathcal{O}_K
- The ideal class group of K is

$$\mathsf{CI}_{\mathcal{K}} := \frac{\{\text{fractional ideals of } \mathcal{K}\}}{\{\text{principal fractional ideals of } \mathcal{K}\}},$$

which is a finite abelian group

- Cl_K is fundamental object, measures how far \mathcal{O}_K is from being a UFD
- Given K explicitly, there are algorithms to compute Cl_K
- Problem: Not much known about structure of Cl_K in general

Robin Ammon (Glasgow)

Cohen–Lenstra Heuristics

• Arithmetic Statistics: Study statistical behaviour of class groups in families of number fields

- Arithmetic Statistics: Study statistical behaviour of class groups in families of number fields
- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Thus if we understand their distribution, then we understand class groups a lot better

- Arithmetic Statistics: Study statistical behaviour of class groups in families of number fields
- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Thus if we understand their distribution, then we understand class groups a lot better
- Goal: Given G finite abelian, what is P(Cl_K ≅ G) where K ranges over a certain family?

- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Goal: Given G finite abelian, what is P(Cl_K ≅ G) where K ranges over a certain family?

A = A = A = E

- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Goal: Given G finite abelian, what is P(Cl_K ≃ G) where K ranges over a certain family?

Computational Data for Imaginary Quadratic Fields

As d < 0 runs over squarefree integers...

- 3 divides $\# \operatorname{Cl}_{\mathbb{Q}(\sqrt{d})}$ about 44% of the time,
- the 3-Sylow subgroup $Cl_{\mathbb{Q}(\sqrt{d})}[3^{\infty}]$ is cyclic about 98% of the time.

- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Goal: Given G finite abelian, what is P(Cl_K ≃ G) where K ranges over a certain family?

Computational Data for Imaginary Quadratic Fields

As d < 0 runs over squarefree integers...

- 3 divides $\# \operatorname{Cl}_{\mathbb{Q}(\sqrt{d})}$ about 44% of the time,
- the 3-Sylow subgroup $Cl_{\mathbb{Q}(\sqrt{d})}[3^{\infty}]$ is cyclic about 98% of the time.
- Data seems strange and not random.

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● ○ ○ ○

- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Goal: Given G finite abelian, what is P(Cl_K ≃ G) where K ranges over a certain family?

Computational Data for Imaginary Quadratic Fields

As d < 0 runs over squarefree integers...

- 3 divides $\# \operatorname{Cl}_{\mathbb{Q}(\sqrt{d})}$ about 44% of the time,
- the 3-Sylow subgroup $Cl_{\mathbb{Q}(\sqrt{d})}[3^{\infty}]$ is cyclic about 98% of the time.
- Data seems strange and not random. But e.g. $\# \operatorname{Cl}_{\mathbb{Q}(\sqrt{d})}$ is not just a number, it is the size of a *group*!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Idea: (unknown) structure of class groups causes patterns, so structural info on class groups is tied to their distribution
- Goal: Given G finite abelian, what is P(Cl_K ≃ G) where K ranges over a certain family?

Computational Data for Imaginary Quadratic Fields

As d < 0 runs over squarefree integers...

- 3 divides $\# \operatorname{Cl}_{\mathbb{Q}(\sqrt{d})}$ about 44% of the time,
- the 3-Sylow subgroup $Cl_{\mathbb{Q}(\sqrt{d})}[3^{\infty}]$ is cyclic about 98% of the time.
- Data seems strange and not random. But e.g. $\# \operatorname{Cl}_{\mathbb{Q}(\sqrt{d})}$ is not just a number, it is the size of a *group*!
- What distribution should we even expect from random groups?

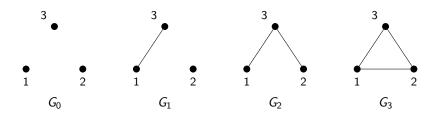
|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

Excursion: Distribution of Random Algebraic Objects

 Given 3 vertices, build a random graph R by independently inserting an edge between two vertices with probability ¹/₂

 A graph isomorphism between two such graphs is σ ∈ S₃ such that vertices *i* and *j* are adjacent if and only if σ(*i*) and σ(*j*) are

- Given 3 vertices, build a random graph R by independently inserting an edge between two vertices with probability $\frac{1}{2}$
- Possible outcomes up to isomorphism:



• Q: What are the probabilities $\mathbb{P}(R \cong G_i)$?

- Each outcome has probability $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$
- Let $Iso(G_i)$ be the set of graphs isomorphic to G_i , then

$$\mathbb{P}(R\cong G_i)=\frac{\#\operatorname{Iso}(G_i)}{8}$$

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ■ ● ● ●

- Each outcome has probability $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$
- Let $Iso(G_i)$ be the set of graphs isomorphic to G_i , then

$$\mathbb{P}(R\cong G_i)=\frac{\#\operatorname{Iso}(G_i)}{8}$$

• Nicer: S_3 operates transitively on $Iso(G_i)$ with stabiliser $Aut(G_i)$,

うりつ ゴビー・ビー・ イビー・ 4 引く

- Each outcome has probability $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$
- Let $Iso(G_i)$ be the set of graphs isomorphic to G_i , then

$$\mathbb{P}(R\cong G_i)=\frac{\#\operatorname{Iso}(G_i)}{8}$$

Nicer: S₃ operates transitively on Iso(G_i) with stabiliser Aut(G_i), so by orbit-stabiliser theorem S₃/Aut(G_i) ^{1:1}→ Iso(G_i), thus

$$\mathbb{P}(R \cong G_i) = \frac{6}{8} \cdot \frac{1}{\#\operatorname{Aut}(G_i)}$$

<<p>◆目目 <目 > <目 < <= > <目 < </p>

Excursion: Distribution of Random Groups of Order n

- Generate a random group R of order n by writing down random n × n multiplication table (repeat if this is not a group structure)
- Q: If G is a group of order n, what is $\mathbb{P}(R \cong G)$?

Excursion: Distribution of Random Groups of Order n

- Generate a random group R of order n by writing down random n × n multiplication table (repeat if this is not a group structure)
- Q: If G is a group of order n, what is $\mathbb{P}(R \cong G)$?
- Exact same arguments as before yield

$$\mathbb{P}(R \cong G) = \frac{\# \{\text{tables isomorphic to } G\}}{\# \{\text{tables that give group structure}\}} \sim \frac{1}{\# \operatorname{Aut}(G)}$$

Principle

The probability that a randomly chosen algebraic object is isomorphic to a given object G is proportional to $\frac{1}{\#\operatorname{Aut}(G)}$.

伺 ト イヨト イヨト

Back to Class Groups

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 - のへの

Cohen–Lenstra Heuristics for Imaginary Quadratic Fields

- Recall: Want to find distribution of Cl_K for K imaginary quadratic
- Look at distribution of *p*-Sylow subgroups $Cl_{\mathcal{K}}[p^{\infty}]$ individually

Cohen–Lenstra Heuristics for Imaginary Quadratic Fields

- Recall: Want to find distribution of CI_K for K imaginary quadratic
- Look at distribution of *p*-Sylow subgroups $Cl_{\mathcal{K}}[p^{\infty}]$ individually
- Computational data for Cl_K[p[∞]] for odd p agrees with behaviour of random abelian p-groups!

Cohen–Lenstra Heuristics for Imaginary Quadratic Fields

- Recall: Want to find distribution of Cl_K for K imaginary quadratic
- Look at distribution of *p*-Sylow subgroups $Cl_{\mathcal{K}}[p^{\infty}]$ individually
- Computational data for Cl_K[p[∞]] for odd p agrees with behaviour of random abelian p-groups!

Conjecture (Cohen-Lenstra, '83)

p odd prime, G finite abelian p-group. Then as K ranges over imaginary quadratic fields,

$$\mathbb{P}(\mathsf{Cl}_{\mathcal{K}}[p^{\infty}]\cong G)=rac{c}{\#\operatorname{Aut}(G)}$$

for a constant c depending only on p.

• Suggests that $Cl_{\mathcal{K}}[p^{\infty}]$ does not carry additional structure!

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● ○ ○ ○

• For K real quadratic, $Cl_K[p^{\infty}]$ behaves differently; data suggests:

Conjecture (Cohen-Lenstra, '83)

p odd prime, G finite abelian p-group. Then as K ranges over real quadratic fields,

$$\mathbb{P}(\mathsf{Cl}_{\mathcal{K}}[p^{\infty}]\cong G)=rac{c}{\#\operatorname{Aut}(G)\cdot\#G}$$

for a constant c depending only on p.

向 ト イヨト イヨト ヨヨ のくら

• For K real quadratic, $Cl_K[p^{\infty}]$ behaves differently; data suggests:

Conjecture (Cohen-Lenstra, '83)

p odd prime, G finite abelian p-group. Then as K ranges over real quadratic fields,

$$\mathbb{P}(\mathsf{Cl}_{\mathcal{K}}[p^{\infty}] \cong G) = \frac{c}{\#\operatorname{Aut}(G) \cdot \#G}$$

for a constant c depending only on p.

向 ト イヨト イヨト ヨヨ のくら

• For K real quadratic, $Cl_K[p^{\infty}]$ behaves differently; data suggests:

Conjecture (Cohen-Lenstra, '83)

p odd prime, G finite abelian p-group. Then as K ranges over real quadratic fields,

$$\mathbb{P}(\mathsf{Cl}_{\mathcal{K}}[p^{\infty}] \cong G) = \frac{c}{\#\operatorname{Aut}(G) \cdot \#G}$$

for a constant c depending only on p.

• Non-random behaviour is related to \mathcal{O}_K^{\times} which now has rank 1

くゆ エヨト イヨト ヨヨ ろくつ

• For K real quadratic, $Cl_K[p^{\infty}]$ behaves differently; data suggests:

Conjecture (Cohen-Lenstra, '83)

p odd prime, G finite abelian p-group. Then as K ranges over real quadratic fields,

$$\mathbb{P}(\mathsf{Cl}_{\mathcal{K}}[p^{\infty}] \cong G) = \frac{c}{\#\operatorname{Aut}(G) \cdot \#G}$$

for a constant c depending only on p.

- Non-random behaviour is related to \mathcal{O}_{K}^{\times} which now has rank 1
- Bartel-Lenstra (2020) conjecture that Arakelov class group, which knows about Cl_K and O[×]_K, is random object as in our principle
- Principle guides us to a better behaved object

Bad Primes and Higher Degrees

- Conjectures have been extended to Galois extensions *K*/*F* for "good primes"
- There are "bad primes" for which distribution is not understood in many cases, including:
 - p that divide |K : F|
 - *p* for which $\mu_p \subseteq K$

Bad Primes and Higher Degrees

- Conjectures have been extended to Galois extensions *K*/*F* for "good primes"
- There are "bad primes" for which distribution is not understood in many cases, including:
 - p that divide |K : F|
 - *p* for which $\mu_p \subseteq K$
- Overall: Cohen–Lenstra heuristics are very strong conjectures that would imply good understanding of class groups
- Many open questions, existing conjectures vastly open!

A = A = A = A = A = A

Thank you!

・ロト < 団ト < ヨト < ヨト < ヨト < ロト