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The Ideal Class Group

• K number field with ring of integers OK

• The ideal class group of K is

ClK :=
{fractional ideals of K}

{principal fractional ideals of K}
,

which is a finite abelian group

• ClK is fundamental object, measures how far OK is from being a UFD

• Given K explicitly, there are algorithms to compute ClK
• Problem: Not much known about structure of ClK in general
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How to Understand Class Groups Better?

• Arithmetic Statistics: Study statistical behaviour of class groups in
families of number fields

• Idea: (unknown) structure of class groups causes patterns,
so structural info on class groups is tied to their distribution

• Thus if we understand their distribution, then we understand class
groups a lot better

• Goal: Given G finite abelian, what is P(ClK ∼= G ) where K ranges
over a certain family?
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How to Understand Class Groups Better?

• Idea: (unknown) structure of class groups causes patterns,
so structural info on class groups is tied to their distribution

• Goal: Given G finite abelian, what is P(ClK ∼= G ) where K ranges
over a certain family?

Computational Data for Imaginary Quadratic Fields

As d < 0 runs over squarefree integers...

• 3 divides #ClQ(
√
d) about 44% of the time,

• the 3-Sylow subgroup ClQ(
√
d)[3

∞] is cyclic about 98% of the time.

• Data seems strange and not random. But e.g. #ClQ(
√
d) is not just a

number, it is the size of a group!

• What distribution should we even expect from random groups?
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Excursion:

Distribution of Random Algebraic Objects
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Excursion: Distribution of Random Graphs

• Given 3 vertices, build a random graph R by independently inserting
an edge between two vertices with probability 1

2

1 2

3

−→

1 2

3

1
2

1
2

1
2

• A graph isomorphism between two such graphs is σ ∈ S3 such that
vertices i and j are adjacent if and only if σ(i) and σ(j) are
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Excursion: Distribution of Random Graphs

• Given 3 vertices, build a random graph R by independently inserting
an edge between two vertices with probability 1

2

• Possible outcomes up to isomorphism:

1 2

3

G0

1 2

3

G1

1 2

3

G2

1 2

3

G3

• Q: What are the probabilities P(R ∼= Gi )?
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Excursion: Distribution of Random Graphs

• Each outcome has probability 1
2 ·

1
2 ·

1
2 = 1

8

• Let Iso(Gi ) be the set of graphs isomorphic to Gi , then

P(R ∼= Gi ) =
# Iso(Gi )

8

• Nicer: S3 operates transitively on Iso(Gi ) with stabiliser Aut(Gi ),

so by orbit-stabiliser theorem S3/Aut(Gi )
1:1←→ Iso(Gi ), thus

P(R ∼= Gi ) =
6

8
· 1

#Aut(Gi )
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Excursion: Distribution of Random Groups of Order n

• Generate a random group R of order n by writing down random
n × n multiplication table (repeat if this is not a group structure)

• Q: If G is a group of order n, what is P(R ∼= G )?

• Exact same arguments as before yield

P(R ∼= G ) =
# {tables isomorphic to G}

# {tables that give group structure}
∼ 1

#Aut(G )

Principle

The probability that a randomly chosen algebraic object is isomorphic to a
given object G is proportional to 1

#Aut(G) .
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Back to Class Groups
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Cohen–Lenstra Heuristics for Imaginary Quadratic Fields

• Recall: Want to find distribution of ClK for K imaginary quadratic

• Look at distribution of p-Sylow subgroups ClK [p
∞] individually

• Computational data for ClK [p
∞] for odd p agrees with behaviour of

random abelian p-groups!

Conjecture (Cohen–Lenstra, ’83)

p odd prime, G finite abelian p-group. Then as K ranges over imaginary
quadratic fields,

P(ClK [p∞] ∼= G ) =
c

#Aut(G )

for a constant c depending only on p.

• Suggests that ClK [p
∞] does not carry additional structure!
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Cohen–Lenstra Heuristics for Real Quadratic Fields

• For K real quadratic, ClK [p
∞] behaves differently; data suggests:

Conjecture (Cohen–Lenstra, ’83)

p odd prime, G finite abelian p-group. Then as K ranges over real
quadratic fields,

P(ClK [p∞] ∼= G ) =
c

#Aut(G ) ·#G

for a constant c depending only on p.

• Non-random behaviour is related to O×
K which now has rank 1

• Bartel–Lenstra (2020) conjecture that Arakelov class group, which
knows about ClK and O×

K , is random object as in our principle

• Principle guides us to a better behaved object
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Bad Primes and Higher Degrees

• Conjectures have been extended to Galois extensions K/F for
“good primes”
• There are “bad primes” for which distribution is not understood in
many cases, including:
• p that divide |K : F |
• p for which µp ⊆ K

• Overall: Cohen–Lenstra heuristics are very strong conjectures that
would imply good understanding of class groups

• Many open questions, existing conjectures vastly open!
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Thank you!
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